If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20u^2-64u+12=0
a = 20; b = -64; c = +12;
Δ = b2-4ac
Δ = -642-4·20·12
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-56}{2*20}=\frac{8}{40} =1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+56}{2*20}=\frac{120}{40} =3 $
| 96=n(12+3) | | q-34=7 | | x−4+x=−4+2x | | 5r-1r=8 | | q−34=7 | | k+32=40 | | 3x+39=17x-73 | | t-35=2 | | x+x+52+x+8=180 | | w+1=56 | | 9x=3x+7 | | 2b+8b+1-8=7b+3b-4 | | 29-c=62 | | 14x+85=2x+97 | | q-36=14 | | n=717-n= | | 112+4x+32=180 | | 2(4+9w)=17 | | -40=-v/5 | | z/4.5=4 | | 3x^2=750 | | 58+90+4h=180 | | 5-4x=8x-19 | | 17푛=51n | | 8k−7=7k | | -5+6y=31 | | 4x+1=−3x+15 | | n−1.6=3.4 | | 9x-18=7x+9 | | 7x+5-3x=23 | | 48=3x+7x+16 | | 4x+4x+(x+20)+(x+20)=180 |